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Abstract

The Integrated Transport and Health Impact Model (ITHIM) is a comprehensive tool that 

estimates the hypothetical health effects of transportation mode shifts through changes to physical 

activity, air pollution, and injuries. The purpose of this paper is to describe the implementation of 

ITHIM in greater Nashville, Tennessee (USA), describe important lessons learned, and serve as an 

implementation guide for other practitioners and researchers interested in running ITHIM. As 

might be expected in other metropolitan areas in the US, not all the required calibration data was 

available locally. We utilized data from local, state, and federal sources to fulfill the 14 ITHIM 

calibration items, which include disease burdens, travel habits, physical activity participation, air 

pollution levels, and traffic injuries and fatalities. Three scenarios were developed that modeled 

stepwise increases in walking and bicycling, and one that modeled reductions in car travel. Cost 

savings estimates were calculated by scaling national-level, disease-specific direct treatment costs 

and indirect lost productivity costs to the greater Nashville population of approximately 1.5 

million. Implementation required approximately one year of intermittent, part-time work. Across 

the range of scenarios, results suggested that 24 to 123 deaths per year could be averted in the 

region through a 1%–5% reduction in the burden of several chronic diseases. This translated into 

$10–$63 million in estimated direct and indirect cost savings per year. Implementing ITHIM in 

greater Nashville has provided local decision makers with important information on the potential 

health effects of transportation choices. Other jurisdictions interested in ITHIM might find the 

Nashville example as a useful guide to streamline the effort required to calibrate and run the 

model.
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Introduction (1.0)

Transportation systems can impact health through changes in physical activity, injury, and 

air pollution mediated disease (Centers for Disease Control and Prevention, 2010). These 

health pathways account for a large burden of mortality in the United States (Caizzo et al., 

2013; Lee et al., 2012; United States Department of Transportation and National Highway 

Traffic Safety Administration, 2015). Quantitative estimates of the net expected change in 

health status attributable to changes in future transportation behavior could help 

governments efficiently allocate resources and reduce health care costs. The Integrated 

Transport and Health Impact Model (ITHIM) is a relatively new, comprehensive tool that 

might fill this need (Woodcock et al., 2009). To date, ITHIM has been used infrequently in 

the United States, primarily in densely-populated areas on the West Coast (Iroz-Elardo et al., 

2014; Maizlish et al., 2013). Implementations of ITHIM in sprawling metropolitan areas 

with diverse mixes of rural, suburban, and urban areas are lacking. Such a project could 

demonstrate ITHIM’s effectiveness across a range of settings and identify additional sources 

for calibration data.

The Nashville Area Metropolitan Planning Organization (NAMPO) is responsible for 

transportation planning for 1.5 million residents in seven counties in north central Tennessee 

(TN), which lies in the southeastern United States. Notably, this area has a high burden of 

chronic disease and associated risk factors (Yoon et al., 2014). The NAMPO has recognized 

transportation’s role in addressing these health concerns and is actively embracing public 

health concepts in transportation planning, influenced by support for active transportation 

(e.g. walking and bicycling) registered in public opinion surveys. For example, the NAMPO 

has adopted a project-selection scoring rubric where 80 of 100 points are dedicated to 

elements of Complete Streets design standards, thereby increasing substantially the number 

of funded projects that meet these standards. Further, the NAMPO has reserved 15% of its 

US Department of Transportation Surface Transportation Program allocation for active 

transportation infrastructure and education projects and 10% for public transit-related 

projects. The NAMPO elected to use ITHIM to estimate the potential health impacts of these 

initiatives that collectively aim to increase walking, bicycling, and transit use in the region. 

The outputs of the ITHIM model would also help the NAMPO educate stakeholders and the 

general public on the relationship between transportation and health.

ITHIM uses comparative risk assessments to estimate the health impacts of changing 

transportation behaviors through three pathways: physical activity, air pollution, and injuries 

(serious and fatal). By taking into account both potential benefits and harms, ITHIM 

provides a comprehensive estimate of health impacts not available in some other models 

(World Health Organization, 2014), but its comprehensiveness requires extensive calibration 

data. Early use of ITHIM in the US relied on robust transportation and health data from the 

state of California (Maizlish et al., 2013), and similar data are not uniformly available in 

other geographic areas. Therefore, the purpose of this paper is to describe (a) the 

implementation, including model calibration, scenario development, and selected results, of 

ITHIM in greater Nashville and (b) important lessons learned during the process. In doing 

so, this paper might serve as an implementation guide for practitioners or researchers in 

other geographic areas, especially, but not limited to, other mid-sized US metropolitan areas.
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Methods and Materials (2.0)

ITHIM Model (2.1)

Details on the development of and calculations within the ITHIM model have been 

previously published (Maizlish et al., 2013; Woodcock et al., 2009) and will only be 

summarized here, as our intent is to detail implementation rather than model development 

and underlying mathematics. The current version of ITHIM being used in the US is 

constructed as a multi-spreadsheet workbook in a commonly available spreadsheet 

application. This allows ITHIM to be run on most computers without additional software 

purchases.

ITHIM estimates the hypothetical health impacts of shifting travel patterns (e.g. distance and 

mode of travel) within a given population, assuming no time lag for behavior change or 

health impacts. Given these assumptions, the purpose of ITHIM is to estimate the magnitude 

and direction of potential net health impacts rather than to precisely forecast disease 

burdens. In the case of the NAMPO, these estimates were used to facilitate a broader 

discussion on the links between transportation and public health, and were not used to plan 

health services or budget for future disease burdens.

Within the model, health impacts are calculated through three exposure pathways: physical 

activity, air pollution, and traffic injuries and fatalities. For each pathway, ITHIM uses 

comparative risk assessment to predict changes in disease burden for a given change in 

exposure. Comparative risk assessment is derived from calculations of population 

attributable fraction (Bhopal, 2008), which estimates the burden of disease attributed to a 

specific exposure. The results from the pathways are combined and health outcomes are 

presented in four summary measures: total mortality (deaths per year), premature mortality 

(years of life lost), morbidity (years living with a disability), and combined morbidity and 

mortality (disability-adjusted life years [DALYs]), which are the sum of years of life lost and 

years living with a disability. ITHIM can also be used to estimate changes in CO2 emissions 

for a given change in travel patterns, but this functionality was not used in the greater 

Nashville area.

Cost Savings Estimation (2.2)

During implementation in California, two economic impact calculations were added to 

ITHIM that have not been previously published. The first method uses the value of a 

statistical life combined with ITHIM-predicted changes to mortality to estimate financial 

impact. The dollar value represented in the value of statistical life is the theoretical “amount 

that a group of people is willing to pay for fatal risk reduction in the expectation of saving 

one life” (Miller, 2000; Rogoff and Thomson, 2014; United States Environmental Protection 

Agency, 2015). The second method combines ITHIM-estimated changes in disease 

prevalence with published US estimates of the direct costs of treatment and indirect costs of 

lost worker productivity for a given illness or condition. Because the NAMPO used ITHIM 

results for public outreach messaging, the second, cost of illnesses method was used as this 

was judged more intuitive in early presentations of the data. In the Nashville 

implementation, this method also produced more conservative estimates than those based on 
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the value of a statistical life. The conditions included in the cost of illness calculations and 

the relevant findings from the literature review are presented in Table 1. All values were 

inflation-adjusted to 2012 dollars (US Bureau of Labor Statistics, 2015). Nashville-specific 

cost estimates were calculated by multiplying the national estimate by the proportion of the 

US population that lives in greater Nashville (0.48%). This method is limited by assuming a 

similar demographic makeup and disease experience for Nashville and the US as a whole. 

The Nashville-estimated costs were then multiplied by the ITHIM-predicted change in 

disease burden to arrive at the estimated change in cost for each condition. Because this 

method does not account for delays between certain exposures and health outcomes (i.e. 

physical activity and prevention of cardiovascular diseases), the NAMPO presented the 

predicted financial impacts as illustrative examples that compared potential health effects to 

transportation spending using common units. These analyses fostered a larger discussion on 

transportation and health and were not used to plan healthcare resources or budgets.

Calibration data sources (2.3)

For this implementation, ITHIM required 14 calibration data items covering underlying 

disease burdens, travel habits, physical activity participation, air pollution levels, and traffic 

injuries and fatalities. Multiple data sources were used; each is listed in Table 2 and 

explained in greater detail below. For all calibration data sources, 2012 values were 

preferred because this was the year of the most recent transportation planning study in 

greater Nashville.

The Middle Tennessee Transportation and Health Study (MTTHS) was the NAMPO’s 

regional household travel survey from 2012 (n=5,164 households and 11,114 individuals) 

and provided seven of 14 calibration data items. Details of the MTTHS are available on the 

NAMPO’s website (Lee et al., 2013). The MTTHS included a log on which respondents 

recorded the mode, purpose, start time, and end time of all trips in a 24-hour period on an 

assigned weekday throughout 5 months of 2012. For all trips (n=50,294), distance was 

estimated using Google Maps default routes. These data provided calibration information on 

the baseline travel habits of Nashville area residents, including travel that involved walking 

or bicycling. Information on vehicle miles traveled by roadway type (local, arterial, and 

highway) were sourced from the NAMPO’s travel demand models.

Two federal sources of data were used for calibration. First, the age and sex distribution of 

the population covered by the NAMPO was obtained from the 2010 decennial US Census. 

Second, reliable estimates of non-travel related physical activity participation (leisure-time, 

domestic, and occupational physical activity) were not available at the local or state level, so 

publicly available values for these activity domains from the National Health and Nutrition 

Examination Survey 2011–2012 were used (Centers for Disease Control and Prevention, 

2013). Greater Nashville may deviate from national estimates, but sensitivity analyses 

suggested the effect would be small (see sections 2.5 and 3.3), and NHANES was the only 

available source with sufficient sample size to stratify by quintile of active transportation 

participation, sex, and age group.

Several branches of the TN state government also supplied important calibration data. These 

data were not publicly available, and required coordinating with personnel at the relevant 
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state agencies. The TN Department of Health provided mortality data for all diseases 

included in the ITHIM calculations. The specific disease groups, including International 

Classification of Diseases, version 10 codes, are presented in Table 3. The most recent data 

were available for the years 2008–2010. A three-year average mortality rate, stratified by age 

group and sex, was calculated for each condition. The TN Department of Safety provided 

the 3-year count of serious and fatal injuries attributable to roadway crashes for 2010–2012. 

These counts were stratified by severity (serious and fatal), roadway type (local, arterial, and 

highway) and by the modes involved in the crash (opposing and victim vehicle). In 

situations where the opposing and victim vehicles were not delineated, the heavier vehicle 

was assumed to be the opposing vehicle. We also did not include bicycle versus pedestrian 

injuries and fatalities as these scenarios were not recorded in the available data sets. Finally, 

the TN Department of Environment and Conservation provided average annual particulate 

matter smaller than 2.5 micrometers in diameter (PM2.5) concentrations and the estimated 

proportion of regional PM2.5 that is attributable to light-duty vehicles. The light-duty vehicle 

contribution was not part of the originally-specified ITHIM calibration data points, but was 

needed to replace a default equation that was used in a previous ITHIM implementation in 

the San Francisco Bay Area (Maizlish et al., 2013). For each scenario, the proportional 

change in light-duty vehicle miles traveled was calculated (VMT%) and the light-duty 

vehicle contribution to regional PM2.5 burden was multiplied by (1−[VMT%]) to arrive at 

the predicted light-duty vehicle contribution.

Once all inputs were obtained and formatted for ITHIM, they were manually entered into the 

ITHIM calibration data spreadsheet page. Due to the large number of stratifications to the 

calibration data (e.g. by age, sex, and mode), the 14 items listed on Table 2 comprised a total 

of 884 individual values.

Scenario Development (2.4)

According to the calibration (baseline) data from the MTTHS, residents in greater Nashville 

performed an average of three minutes per day or 21 minutes per week of walking and 

bicycling for transportation comprised of 0.7 miles per week of walking (18.4 minutes), and 

0.3 miles per week of bicycling (2.6 minutes). Note that walking and bicycling for 

transportation are not common behaviors in greater Nashville, and many residents report 

doing neither. The average values are often attributable to a few individuals performing far 

more than the population average. We present average values rather than medians because 

the medians would be 0 and therefore less informative. The NAMPO was interested in 

estimating the health impacts of increasing the average amount of walking and bicycling in 

the region, so three scenarios were developed with progressively higher average walking and 

bicycling participation, while holding total miles traveled by all modes constant (Table 4).

In the conservative scenario, we modeled the effects of increasing average per capita 

walking an additional 1.0 mile per week and bicycling an additional 0.7 mile per week, 

which increased the average total weekly time in active transportation to 45 minutes per 

person. This translated to an additional 3.5 minutes per day on average in active 

transportation, twice the baseline per capita average. In the moderate scenario, we modeled 

the effects of increasing walking an additional 3.0 miles per week and bicycling an 
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additional 1.2 miles per week, which increased the average total weekly time in active 

transportation to 94 minutes per person. This translated to an additional 10.5 minutes per 

day on average in active transportation. The aggressive scenario was developed as a “best-

case scenario” in which we modeled the health impacts that could be expected if the average 

resident of greater Nashville met the aerobic component of the 2008 Physical Activity 

Guidelines through active transportation (150 minutes per week of at least moderate-

intensity aerobic physical activity)(US Department of Health and Human Services, 2008). 

This duration was attained by increasing the baseline average walking distance by 5.0 miles 

per week and bicycling distance by 2.7 miles per week. This translated to an additional 18.5 

minutes per day on average in active transportation.

A final scenario was developed to determine the reduction in car travel that would be 

necessary to offset any additional injuries and fatalities incurred by increasing the average 

per capita weekly walking and bicycling by 1 mile each. We held the ratio of car driver to 

car passenger miles constant and iteratively reduced these values by 0.1 mile until the 

predicted DALYs were ≤ 0.

Sensitivity Analyses (2.5)

We were interested in knowing which calibration items were most influential to the 

predicted health outcomes. To determine this, we varied the values of each calibration item 

by +/− 10% and recorded the net change in predicted DALYs. We noted the calibration data 

points that changed the absolute value of net DALYs by at least +/− 3%.

Results (3.0)

Process Summary (3.1)

The calibration began in January 2014. When calibration data were received from partner 

organizations, the analyses and data formatting were done by one person working 

approximately half-time on this project. It is important to note that the effort was 

discontinuous as there were periods with no activity while partner organizations gathered the 

needed data or the primary analyst worked on other projects. The initial pilot ITHIM runs 

were performed in August 2014 but did not include calibration for nonfatal traffic injuries, 

which was done in December 2014. Scenario development occurred in January and February 

2015, and sensitivity analyses began in May 2015.

Nashville Scenarios (3.2)

Under the conservative scenario, ITHIM predicted 38 deaths averted due to prevention of 

chronic disease and 14 traffic fatalities incurred for a net improvement of 24 deaths per year 

averted (Table 4). The net change represents a 0.4% decrease in all deaths attributable to the 

conditions considered in ITHIM. When expressed as DALYs, the pattern was similar, with a 

net improvement of 572 averted DALYs, again representing 0.4% of the underlying total for 

these conditions (Table 4). The three conditions with the largest change were injuries and 

fatalities (+6.8%), diabetes (−1.1%) and cardiovascular diseases (−1.0%). After applying the 

summary results to the cost estimates, approximately $10 million was predicted to be saved 

through decreased direct healthcare expenses and indirect productivity losses. It should be 
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noted that in this and all other scenarios, the benefits attained through increased physical 

activity far outweigh the benefits attained from reduced air pollution (99.99% versus 0.01%, 

respectively).

Under the moderate and aggressive scenarios, the predicted benefits continued to outweigh 

the predicted harms with a net decrease of 79 deaths per year (1.2% of total) and 1,552 

averted DALYs (1.0% decrease in total DALYs). Injuries and fatalities (+15.4%), diabetes 

(−3.0%) and cardiovascular diseases (−3.0%) continued to be the conditions most heavily 

impacted. The cost estimates for the moderate scenario suggested that $32 million could be 

saved in direct and indirect costs. The aggressive scenario predicted a net decrease of 123 

deaths per year (1.9% of total) and a net improvement of 2,642 averted DALYs (1.8% of 

total). Again, injuries and fatalities (21.5%), diabetes (−4.7%), and cardiovascular diseases 

(−4.6%) contributed the largest changes. The estimated cost savings of the aggressive 

scenario totaled $63 million in direct and indirect costs.

In the final scenario, after an increase in both walking and bicycling of 1.0 mile per person 

per week, the iterative reductions in car miles traveled suggested that an 11% decrease in car 

miles per person per week (175.1 versus 195.9 miles per week, Table 4) would offset 

incurred DALYs due to pedestrian and bicyclist injuries and fatalities. While the decrease in 

average car miles per person is substantial, the average commute distance in greater 

Nashville is 11 miles (Kneebone and Holmes, 2015); for the average commuter, this change 

could be achieved by telecommuting one day per week. The model suggested that 1,212 

DALYs would be averted due to chronic disease prevention (primarily cardiovascular disease 

at −1.7% and diabetes at −2.0%) and 1 DALY would be averted due to reduced injuries and 

fatalities. The predicted change in deaths was slightly different in that 41 deaths would be 

averted due to chronic disease prevention, but 2 deaths would be incurred from fatal injuries. 

The difference in deaths versus DALYs in this scenario is attributable to different 

calculations for predicted non-fatal and fatal injuries; both DALY and death estimations 

include fatalities while only DALYs include non-fatal injuries. There is a large enough 

decrease in non-fatal injuries in this scenario to cause a net improvement in DALYs, but not 

deaths. The estimated direct and indirect cost savings under this scenario totaled 

approximately $46 million, placing it between the moderate and aggressive scenarios.

Sensitivity Analyses (3.3)

The sensitivity analyses were conducted under the conditions of the moderate scenario 

described previously (Table 4). The results of sensitivity analyses suggested that four 

calibration data items changed net results by ≥ 3% when their value was changed by +/

− 10%: per capita mean daily transportation minutes and miles, mortality due to ischemic 

heart disease, and the standard deviation of mean daily active travel time (Figure 1). Of 

these, the largest change was a 9.2% increase in net averted DALYs caused by a 10% 

decrease in the standard deviation of mean daily active travel time. While not considered a 

regional calibration data item as described above, we found that a modifiable parameter 

included in ITHIM to approximate the “safety in numbers” effect (Jacobsen, 2003) in injury 

and fatality calculations was also impactful. This agrees with the findings of Maizlish, et al, 

and interested readers are directed there for a technical explanation (Maizlish et al., 2013).
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Discussion (4.0)

Implementation of ITHIM in greater Nashville was a multistep, collaborative process that 

yielded valuable insight into the relation between transportation mode choices and health. 

Input was needed from local, state, and federal sources, including the NAMPO, TN 

Department of Health, TN Department of Safety, TN Department of Environment and 

Conservation, US Census Bureau, and US Centers for Disease Control and Prevention. The 

findings from this effort suggested that if health impacts from altered transportation patterns 

occurred without delay, the benefits from chronic disease prevention might be greater than 

the incurred harms of increased traffic injuries and fatalities, and that incurred harms might 

be ameliorated by reducing car travel. The NAMPO is actively using these results to further 

support their efforts around active transportation initiatives.

Data considerations (4.1)

The strength of ITHIM is the comprehensiveness with which it evaluates the health impacts 

of changing transportation patterns. By considering transportation and non-transportation 

physical activity, mode- and roadway-specific injuries and fatalities, and regional PM2.5 

levels, and combining these with age- and sex-specific disease burdens, ITHIM is able to 

estimate both potential benefits and harms of different transportation mode shifts. Notably, 

the main factor that limits ITHIM’s widespread use is related to this strength: the need for 

extensive calibration data. Acquiring, cleaning, formatting, and entering calibration data into 

the model requires considerable statistical analyses and data management skills. Many 

jurisdictions, especially smaller cities, might not have reliable estimates for several 

calibration data items, or might lack the population size needed to attain reliable estimates. 

Also, because data are needed from collaborating organizations, the speed at which those 

data are made available could be a rate-limiting step in preparing ITHIM for use. Before 

beginning an ITHIM implementation, a jurisdiction might benefit from meeting with 

collaborators to discuss data needs, such as date ranges, formats, and schedule for data 

delivery, in order to prioritize analyses and streamline the calibration process. Other models, 

including the Health Economic Assessment Tool from the World Health Organization 

(World Health Organization, 2014), require fewer inputs and are simpler to implement, but 

are less comprehensive than ITHIM. This option may be preferable for those needing rapid 

estimates of health impact.

The calibration process required several important decisions on data usage. First, ITHIM 

was developed in part to model the health co-benefits of reducing greenhouse gas emissions 

through altered transportation patterns. The NAMPO decided not to use the greenhouse gas 

functionality in the model as this was not a policy priority in the greater Nashville region. 

Second, previous implementations have used a linear equation to model the association 

between vehicle miles traveled and PM2.5 levels (Maizlish et al., 2013). Such equations can 

be obtained from travel demand and air shed models. For the NAMPO, this approach was 

not possible because of time and staffing constraints. Instead, we modeled proportional 

reductions to the fraction of regional PM2.5 that is attributed to light-duty vehicles. This 

approach yielded similar results to those presented by Maizlish et al (2013) in that the air 

pollution benefits were miniscule in comparison to the benefits of increased physical 
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activity. Future ITHIM users might similarly consider alternative data sources when the 

exact data are unavailable.

Data presentation and use (4.2)

The NAMPO used ITHIM output for messaging that supported their walking, biking, and 

transit initiatives. In particular, information on potential cost savings and disease-specific 

effects (Figure 2) were noted as important by local stakeholders and the NAMPO Executive 

Board, which is made up of elected officials from the NAMPO jurisdiction, area transit 

agencies, the TN Department of Transportation, and the Federal Highway Administration. 

Recipients of these results tended to prefer easy-to-understand values like deaths averted (as 

in Table 4) and % reductions in disease burdens over DALYs, which might be confusing to 

those outside the public health and safety fields.

When presenting ITHIM results, several questions arose repeatedly from various audiences. 

First and foremost, many stakeholders expressed concern over the predicted increased 

burden of injuries and fatalities (e.g. +15.4% in the moderate scenario). Our decision to hold 

constant total miles traveled under the conservative, moderate, and aggressive scenarios 

contributed to this burden. We assumed that every mile of additional walking and bicycling 

would replace one mile of car travel (a 1:1 substitution). If people choose destinations that 

are closer when walking or bicycling versus driving, this would result in a proportionally 

larger decrease in car miles traveled. In post-hoc alternative scenarios, increasing to a 1:1.5 

mile substitution reduced the incurred DALYs under the moderate scenario from 1,240 to 

1,175. As evidenced by our injury-neutral scenario, further reductions in car travel might 

remove this burden entirely. Additionally, the “safety in numbers” exponent in the ITHIM 

injury predictions might not fully or accurately account for changes in safety that would 

result from built environment changes that support walking and bicycling, and this was 

shown to be an influential parameter in sensitivity analyses. Future research might shed light 

on the causes of the safety in numbers phenomenon (Jacobsen et al., 2015), allowing better 

representation of this effect in modeling efforts.

Another area of concern among audiences was the timing of ITHIM predicted effects, as 

mentioned in sections 2.1 and 2.2. Some protective effects of physical activity and reduced 

air pollution modeled in ITHIM require years or decades to accrue, whereas traffic injuries 

and fatalities have a more immediate impact. Also, transportation behavior change resulting 

from new or improved transportation infrastructure could require months or years to fully 

take hold, and some physically active forms of transportation could simply replace other 

active behaviors such as leisure time exercise. As implemented in Nashville, ITHIM is 

modeling the predicted effects of immediately changing the behavior of the population as it 

existed at baseline (2012), and assuming all effects begin to accrue immediately, continue 

for one year, and do not displace other active behaviors. It was helpful to repeatedly 

acknowledge the timing disconnect and stress the hypothetical nature of these calculations.

Finally, the sectors impacted by potential cost savings were noted on occasion. The 

predicted savings in our models would be primarily realized by private individuals and 

insurers (direct healthcare costs) and employers (increased productivity and some direct 

costs). Conversely, expenditures to help increase walking and bicycling would likely be 
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borne by the transportation sector. This is a valid point for public outreach, and may be 

partially offset by the reduced cost to construct and maintain pedestrian and bicyclist 

transportation infrastructure compared to that for only automobiles.

The importance of sensitivity analyses (4.3)

The sensitivity analyses produced some important insights for this, and perhaps other 

ITHIM implementations. First, care should be taken with walking data. In Nashville and in 

many US cities (McKenzie, 2014), walking was far more common than bicycling at 

baseline, meaning it was the primary determinant of time spent in active transportation, and 

we maintained the walking to bicycling ratio in 3 of our 4 scenarios. ITHIM uses time spent 

in active transportation combined with its standard deviation (another influential data item), 

to model the shape of the distribution of physical activity in the population, giving these 

items a sizeable impact. Second, we were concerned about the validity of using national 

estimates from NHANES to represent the non-transportation physical activity in greater 

Nashville. Sensitivity analyses showed that these values were not overly influential: a 10% 

change in either direction altered DALY estimates less than one percent. Finally, sensitivity 

analyses were useful for identifying errors with the calibration data. During this process, we 

identified erroneous mortality statistics and an omitted calculation estimating the variability 

of daily active transportation time. The act of manually changing calibration values allowed 

recognition and correction of these issues.

Concluding remarks (4.4)

Future implementations of ITHIM might not be as complicated as the Nashville experience. 

The ITHIM model developers have begun preliminary work on a new version of ITHIM that 

uses open-source statistical software and, potentially, different calibration data sources and 

formats (Woodcock et al., 2015). Additionally, the US Centers for Disease Control and 

Prevention is currently working on a national calibration of the current ITHIM version that 

might yield insights into scaling to smaller geographic regions such as states and cities. 

These efforts could considerably reduce the effort of implementing ITHIM in years to come.

Implementing ITHIM in Nashville was one of several steps that the NAMPO has taken to 

improve population health through transportation planning. Building upon citizen input and 

health and transportation survey data, the ITHIM results provide context for the overarching 

health and transportation goals of the greater Nashville region. NAMPO's primary purpose 

in running ITHIM was to help quantify for decision makers and the public the potential 

impact of active transportation on health outcomes. ITHIM outputs were well-received, the 

results are referenced in the NAMPO 2040 Regional Transportation Plan in which active 

transportation projects were substantially increased.

Further efforts to realize these potential health benefits could include targeted selection of 

projects that encourage the desired behavior changes. Health and transportation scenario 

planning tools and latent demand models that provide information at small geographic scales 

could complement ITHIM (Calthorpe Associates, 2012, Ulmer, et al., 2014). Whereas 

ITHIM estimates the broad health changes that could occur with a change in transportation 
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behaviors, these complementary methods might be able to identify built environment 

projects and specific locations that are most likely to produce the modeled behaviors.

In conclusion, ITHIM has provided important insights into the links between transportation 

and health in greater Nashville. The model suggests that even modest increases in walking 

and bicycling could have meaningful impacts on health and financial outcomes, though 

cautious interpretation of results is warranted given the assumptions of the model. 

Implementing ITHIM was a collaborative effort spanning nearly a year of intermittent work 

and requiring considerable data analysis and management skills. Other jurisdictions might 

benefit by evaluating the feasibility of completion before investing significant resources in 

an ITHIM implementation.
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Figure 1. 
Results of sensitivity analyses on the 14 ITHIM calibration data items for the Nashville Area 

Metropolitan Planning Organization showing the four most influential calibration items

AT: Active transportation

DALYs: Disability-adjusted life years

Min: minutes

Per cap: Per-capita

Transp: Transportation

Wk: week
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Figure 2. 
Disease-specific results for the moderate scenario showing predicted changes in disease 

burdens as deaths per year and direct and indirect costs
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Table 2

ITHIM calibration data needs and sources for the NAMPO

Source Calibration Data Item Units Strata

Middle TN
Transportation
and Health

Study1

Per capita mean daily travel distance Miles/person/day Travel mode2

Per capita mean daily travel time Min/person/day Travel mode

Ratio: per capita mean daily active transportation time
(reference group: females aged 15–29 years) Dimensionless Walk, bike, age3, sex

Standard deviation of mean daily active transportation time Min/person/day None

Walking speed Miles/hour None

Ratio of daily per capita bicycling time to walking time Dimensionless Bicycle : walk

Personal auto travel distance and time Miles and hours/day Driver, passenger

Travel Demand
Model

Vehicle miles traveled (VMT) by facility type Miles/day Travel mode and road type4

US Census Distribution of population by age and gender % Age, sex

NHANES Per capita weekly non-travel related physical activity MET-hours/week Median of quintile of walk +
bicycle METs, by age and sex

TN Department
of Health

Age-sex specific ratio of disease-specific mortality rate
between Nashville metro and USA. Dimensionless Disease group5, age, sex

Proportion of colon cancers from all colorectal cancers Dimensionless None

TN Department
of Safety

Serious and fatal injuries between a striking vehicle and a
victim vehicle in road traffic collisions

Injuries Severity, striking mode X
victim mode, road type

TN Department
of Environment
and Conservation

Emissions of PM2.5 attributable to light-duty vehicles Tons/day None

1
The Middle Tennessee Transportation and Health Study was the NAMPOs transportation planning study in 2012

2
Travel modes: Auto driver, auto passenger, motorcycle, bus, train, truck, walk, bike

3
Age groups: 0–4, 5–14, 15–29, 30–44, 45–59, 60–69, 70–79, 80+

4
Road types: local, arterial, highway

5
See Table 3

TN: Tennessee
NHANES: National Health and Nutrition Examination Survey
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Table 3

Diseases included in the ITHIM model and their respective ICD-10 codes used to obtain mortality statistics for 

calibration

Condition ICD-10 Code(s)

Cancers

  Breast C50

  Colorectal C18–C21

  Trachea, bronchus, and lung C33–C34

Cardiovascular diseases

  Hypertensive heart disease I10–I13

  Ischemic heart disease I20–I25

  Inflammatory heart disease I30–I33, I38, I40, I42

  Cerebrovascular disease I60–I69

Alzheimer’s and other dementias F01, F03, G30–G31

Depression (Unipolar depressive disorders) F32–F33

Road traffic injuries V01–V89, Y85

Respiratory conditions

  Lower and upper respiratory infections1 J00–J06, J10–J18, J20–J22

  COPD, asthma, other respiratory diseases J30–J39, J40–J98

1
Reported separately for children < 5 years

COPD: Chronic obstructive pulmonary disease
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